Self-Organized Nanoscale Roughness Engineering for Broadband Light Trapping in Thin Film Solar Cells
نویسندگان
چکیده
We present a self-organized method based on defocused ion beam sputtering for nanostructuring glass substrates which feature antireflective and light trapping effects. By irradiating the substrate, capped with a thin gold (Au) film, a self-organized Au nanowire stencil mask is firstly created. The morphology of the mask is then transferred to the glass surface by further irradiating the substrate, finally producing high aspect ratio, uniaxial ripple-like nanostructures whose morphological parameters can be tailored by varying the ion fluence. The effect of a Ti adhesion layer, interposed between glass and Au with the role of inhibiting nanowire dewetting, has also been investigated in order to achieve an improved morphological tunability of the templates. Morphological and optical characterization have been carried out, revealing remarkable light trapping performance for the largest ion fluences. The photon harvesting capability of the nanostructured glass has been tested for different preparation conditions by fabricating thin film amorphous Si solar cells. The comparison of devices grown on textured and flat substrates reveals a relative increase of the short circuit current up to 25%. However, a detrimental impact on the electrical performance is observed with the rougher morphologies endowed with steep v-shaped grooves. We finally demonstrate that post-growth ion beam restructuring of the glass template represents a viable approach toward improved electrical performance.
منابع مشابه
Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملIntroducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کاملEngineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells.
A theoretical study of randomly rough interfaces to obtain light trapping in thin-film silicon solar cells is presented. Roughness is modeled as a surface with Gaussian disorder, described using the root mean square of height and the lateral correlation length as statistical parameters. The model is shown to describe commonly used rough substrates. Rigorous calculations, with short-circuit curr...
متن کاملFlexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells
Photovoltaic light trapping theory and experiment do not always clearly demonstrate how much useful optical absorption is enhanced, as opposed to parasitic absorption that cannot improve efficiencies. In this work, we develop a flexible flux plane method for capturing these parasitic losses within finite-difference time-domain simulations, which was applied to three classical types of light tra...
متن کاملBroadband light trapping based on periodically textured ZnO thin films.
Transparent conductive front electrodes (TCFEs) deployed in photovoltaic devices have been extensively studied for their significance in transporting carriers, coupling and trapping the incident photons in high-performing solar cells. The trade-off between the light-transmission, electrical, and scattering properties for TCFEs to achieve a broadband improvement in light absorption in solar cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017